Contents

Volume I

Preface		vii
1. AL	GEBRA OF MATRICES	1.1
1.1	Definition	1.1
1.2	Special Types of Matrices	1.1
1.3	Mathematical Operations on Matrices	1.3
1.4	Transpose of a Matrix	1.12
1.5	Symmetric and Skew-symmetric Matrices	1.15
1.6	Orthogonal Matrix	1.16
1.7	Complex Matrix	1.20
1.8	Unitary Matrix	1.20
1.9	Hermitian Matrix	1.21
1.10	Skew-Hermitian Matrix	1.21
1.11	Some More Definitions	1.22
1.12	Adjoint of Square Matrix	1.27
2. RA	NK OF A MATRIX AND LINEAR EQUATIONS	2.1
2.1	Introduction	2.1
2.2	Submatrix and Minor of a Matrix	2.1
2.3	Rank of a Matrix	2.2
2.4	Theorem	2.3
2.5	Equivalence of Matrix	2.4
2.6	Row-Reduced Echelon Form (RREF) of a Matrix	2.5
2.7	Invariance of Rank Through Elementary Transformations	2.6
2.8	Normal Form of a Matrix	2.11
2.9	Inverse of a Square Matrix	2.22
2.10	Methods of Computing the Inverse of a Matrix	2.23
2.11	Cramer's Rule (for Solution of Simultaneous Equation)	2.29
2.12	Row Rank and Column Rank of a Matrix	2.32
2.13	Homogeneous Linear Equations	2.32

	2.14 Some Important Conclusions about the Nature of Solutions of the Equation AX =	O 2.33
	2.15 Fundamental Set of Solutions of the Equation AX = O	2.33
	2.16 Working Rule for Finding the Solutions of the Equation AX = O	2.34
	2.17 Vectors	2.40
	2.18 Linear Dependence and Linear Independence of Vectors	2.40
	2.19 Linear Combination of Vectors	2.40
	2.20 System of Linear Non-homogenous Equations	2.42
3.	CHARACTERISTIC ROOTS AND CHARACTERISTIC	
	VECTORS OF A MATRIX	3.1
	3.1 Metric Polynomials (Definition)	3.1
	3.2 Characteristic Values and Characteristic Vectors of a Matrix	3.1
	3.3 Some Important Theorems	3.2
	3.4 Working Rule of Finding Eigenvalues and Eigenvectors of a Matrix	3.4
	3.5 The Cayley-Hamilton Theorem	3.12
	3.6 Diagonalization of a Matrix	3.18
	3.7 Applications of Matrices	3.25
4.	. SUCCESSIVE DIFFERENTIATION	4.1
	4.1 Introduction	4.1
	4.2 The nth Differential Coefficient of Functions: Standard Results	4.1
	4.3 Successive Differentiation	4.4
	4.4 Leibnitz's Theorem	4.11
5.	. EXPANSION OF FUNCTIONS	5.1
	5.1 Taylor's Theorem	5.1
	5.2 Maclaurin's Theorem	5.2
6.	. PARTIAL DIFFERENTIATION	6.1
	6.1 Introduction	6.1
	6.2 Continuity	6.1
	6.3 Partial Derivatives of First and Higher Orders	6.2
	6.4 Which Variable is to be Regarded as Constant?	6.13
	6.5 Total Differential Coefficient	6.14
	6.6 Differentiation of Implicit Functions	6.18
	6.7 Homogeneous Functions	6.24
	6.8 Euler's Theorem of Homogeneous Functions	6.24
7.	. EXPANSION OF FUNCTIONS FOR TWO VARIABLES,	
	APPROXIMATION, MAXIMA AND MINIMA	7.1
	7.1 Taylor's Theorem for Two Variables	7. 1
	7.2 Approximate Calculations	7.0
	7.3 Maxima and Minima of a Function of Two Variables	7.14
	7.4 Maxima and Minima of a Function of Three Variables	7.13
	7.5 Lagrange's Method of Undetermined Multipliers	7.2

			Contents	хi
8.	JAC	COBIANS		8.1
	8.1	Definition		8.1
	8.2	Particular Case		8.2
	8.3	Jacobian of Function of Functions		8.3
	8.4	Theorem		8.5
	8.5	Jacobian of Implicit Functions (for Two Independent Variables)		8.5
	8.6	Jacobian of Implicit Functions (for <i>n</i> Independent Variables)		8.6
	8.7	Theorem		8.8
	8.8	Theorem		8.9
	8.9	Covariants and Invariants		8.10
	8.10	Theorem		8.10
9.	AS	/MPTOTES		9.1
	9.1	Introduction		9.1
	9.2	Definition		9.1
	9.3	Condition for Infinite Roots of a given Equation		9.2
	9.4	Asymptotes of Algebraic Curves		9.2
	9.5	Simple Method of Finding the Asymptotes: Use of Taylor's Theorem		9.4
	9.6	Asymptotes Parallel to the Coordinate Axes		9.10
	9.7	Intersection of a Curve and its Asymptote		9.13
	9.8	Asymptotes of Polar Curves		9.17
	9.9	Circular Asymptotes		9.20
	9.10	Asymptotes for Parametric Curves		9.21
10.	CUF	RVE TRACING	1	10.1
	10.1	Multiple Point		10.1
	10.2	Classification of Cusps		10.2
	10.3	Tangents at the Origin		10.3
	10.4	Conditions for the Existence of Double Points of the Curve		10.3
	10.5	Curve Tracing (Cartesian Equations)		10.6
	10.6	Curve Tracing: Polar Coordinates	1	0.18
	10.7	Curve Tracing-Parametric Equations	1	0.18
11.	MU	LTIPLE INTEGRALS		11.1
	11.1	Double Integrals		11.1
	11.2	Evaluation of Double Integrals		11.2
	11.3	Change of Order of Integration	1	11.11
	11.4	Double Integrals in Polar Coordinates	1	1.12
	11.5	Triple Integrals	1	1.26
		Change of Variables		11.30
12.	GAI	MMA, BETA FUNCTIONS AND DIRICHLET'S INTEGRALS	-	12.1
	12.1	Introduction		12.1
	12.2	Gamma Function		12.1

xii Mathematics for Engineers

12.3	Different Forms of Γn	12.2
12.4	Convergence of Gamma Function	12.2
12.5	Properties of Gamma Functions	12.3
12.6	Continuity of Tn	12.6
12.7	Successive Derivatives of Γn	12.7
12.8	Graph of Γ n	12.7
12.9	The Integral Form of log Γn	12.7
12.10	Beta Functions	12.14
12.11	A Fundamental Property: $B(m, n) = B(n, m)$	12.14
	Convergence of Beta Function	12.15
12.13	Different Forms of Beta Function	12.16
12.14	Relation Between Gamma and Beta Functions	12.17
12.15	Dirichlet's Theorem for Three Variables	12.24
12.16	Dirichlet's Theorem for n Variables	12.26
12.17	Liouville's Extension of Dirichlet's Theorem	12.27
13. APP	LICATIONS OF MULTIPLE INTEGRALS	13.1
13.1	Area by Double Integration	13.1
13.2	Volume as a Double Integral	13.2
13.3	Volumes of Solids as Triple Integrals	13.8
13.4	Volume of Solid of Revolution	13.9
13.5	Moment of Inertia (Definition)	13.14
13.6	Mass, Moments, Centroids and Moment of Inertia by Double Integration	13.15
13.7	Uses of Moment of Inertia	13.17
13.8	Mass, Moments, Centroid and Moment of Inertia in Polar Coordinates by	
	Double Integration	13.17
13.9	Center of Gravity of the Surface of Revolution	13.25
13.10	C.G. of the Solid of Revolution	13.26
13.11	Pappus and Guldin's Theorem of Surface of Revolution	13.28
13.12	Pappus and Guldin's Theorem of Volume of Revolution	13.29
13.13	Centre of Pressure	13.30
13.14	Mass, Centroid, Moments of Inertia etc. by Triple Integrals	13.32
14. DIFF	ERENTIATION OF VECTORS	14.1
14.1	Vector Function	14.1
14.2	Scalar Fields and Vector Fields	14.1
14.3	Limit of a Vector Function	14.2
14.4	Continuity of a Vector Function	14.2
14.5	Derivative of a Vector Function w.r.t. a Scalar	14.2
14.6	Results	14.3
14.7	Theorem	14.4
14.8	Derivative of Function of a Function	14.5
14.9	Constant Vectors	14.5
14.10	Geometrical Interpretation of the Derivative	14.9
14.11	Velocity and Acceleration	14.10
14.12	Vector Valued Functions of Several Scalar Variables	14.11

			Contents	Xiii
	14.13	Vector Function of Two Scalar Variables		14.11
	14.14	Limit of a Vector Function of Two Scalar Variables		14.11
	14.15	Theorems (on Limits of a Vector Function of Two Scalar Variables)		14.12
	14.16	Partial Derivatives		14.12
	14.17	Partial Derivatives of Second and Higher Orders		14.13
	14.18	Result (on Differentiation of Vector Functions of Two Variables)		14.13
15.	INTE	GRATION OF VECTORS		15.1
	15.1	Integration		15.1
	15.2	Standard Results		15.1
	15.3	Definite Integral		15.3
16.	DIFF	ERENTIAL OPERATORS: GRADIENT, DIVERGENCE		
	AND	CURL		16.1
	16.1	The Vector Differential Operator Del $(\vec{\nabla})$		16.1
	16.2	Gradient of a Scalar Point Function		16.1
	16.3	Divergence of a Vector Point Function		16.4
	16.4	Curl of a Vector Point Function		16.4
	16.5	Laplace's (or Laplacian) Operator		16.5
	16.6	Vector Identities Involving Differential Operators		16.8
	16.7	Level Surfaces		16.16
	16.8	Directional Derivative of a Scalar Point Function		16.17
	16.9	To Determine the Equations of the Tangent Plane and Normal to the Surface		
		$\phi(x, y, z) = c \text{ at a given Point } P_0(x_0, y_0, z_0)$		16.18
	16.10	To Determine the Equations of the Tangent Line and Normal Plane at a given		
		Point $P_0(x_0, y_0, z_0)$ of the Curve Represented by the Intersecting Surfaces		
		$\phi(x,y,z) = c_1 \text{ and } \psi(x,y,z) = c_2$		16.19
		Geometrical Interpretation of Gradient of a Scalar Point Function		16.19
		Physical Significance of the Divergence of a Vector Point Function		16.21
	16.13	Physical Significance of Curl of a Vector Point Function		16.22
17.	LINE	, SURFACE AND VOLUME INTEGRALS		17.1
	17.1	Definitions		17.1
	17.2	Line Integral		17.1
	17.3	Work Done by a Force		17.2
	17.4	Surface Integral		17.11
	17.5	Evaluation of Surface Integral		17.12
	17.6	Volume Integral		17.13
18.	GRE	EN'S, STOKE'S AND GAUSS'S THEOREMS		18.1
	18.1	Green's Theorem in Plane (Relation between Plane Surface and Line Integral	s)	18.1
	18.2	Stoke's Theorem (Relation between Surface and Line Integrals)		18.3
	18.3	Deductions from Stoke's Theorem		18.6
	18.4	Gauss's Divergence Theorem (Relation between Surface and Volume Integral))	18.7

	18.5	Cartesian Form of Gauss's Divergence Theorem	18.9
	18.6	Deductions from Gauss's Divergence Theorem	18.9
19	. DIFF	ERENTIAL EQUATIONS AND THEIR FORMATION	19.1
	19.1	Differential Equation (Definition)	19.1
	19.2	Ordinary Differential Equation (Definition)	19.3
	19.3	Partial Differential Equation (Definition)	19.3
	19.4	Order and Degree of a Differential Equation	19.3
	19.5	Linear and Non-linear Differential Equations	19.2
	19.6	Solution of a Differential Equation	19.2
	19.7	Types of Solutions	19.2
	19.8	Initial-Value Problems (IVP) and Boundary-Value Problems (BVP)	19.4
	19.9	Existence and Uniqueness of Solutions	19.4
		Linearly Dependent and Linearly Independent Solutions	19.6
		Wronskian	19.6
	19.12	Formation of Differential Equations	19.7
20.		ERENTIAL EQUATIONS OF THE FIRST ORDER	
	AND	FIRST DEGREE	20.1
	20.1	Equations of the First Order and First Degree	20.1
	20.2	Equations in which the Variables are Separable	20.1
	20.3	Homogeneous Equations	20.6
	20.4	Equations Reducible to Homogeneous Form	20.11
	20.5	Linear Equations	20.18
	20.6	Equation Reducible to the Linear Form (or Bernoullis' Equations)	20.23
	20.7	Exact Differential Equations	20.25
	20.8	Integrating Factors	20.27
	20.9	Change of Variables	20.31
	20.10	Applications of First Order Differential Equations	20.31
21.	LINE	AR DIFFERENTIAL EQUATIONS WITH	
	CON	STANT COEFFICIENTS	21.1
	21.1	Linear Differential Equations with Constant Coefficients	21.1
	21.2	To find Complementary Function (C.F.) of the given Equation	21.2
	21.3	Working Rule for Finding C.F.	21.5
	21.4	The Symbolic Function $\frac{1}{f(D)}$ (Definition)	21.10
	21.5	Determination of the Particular Integral (P.I.)	21.11
	21.6	General Method of Getting P.I.	21.11
	21.7	Short Methods for Finding the P.I.	21.12
22.		OGENEOUS LINEAR EQUATIONS OR	
	EULE	ER-CAUCHY'S EQUATIONS	22.1
	22.1	Homogeneous Linear Equations	22.1
		Method of Solution of Homogeneous Linear Differential Equations	22.1

22.3	Working Rule for Solving Linear Homogeneous Differential Equation	22.2
22.4	Definition of $\left\{\frac{1}{f(D_1)}\right\} X$, where $D_1 \equiv \frac{d}{dz}$ and X is a Function of x	22.3
22.5	An Alternative Method of Getting P.I. of Homogeneous Equation	
	$F(D_1) Y = X$, where $D_1 = \frac{d}{dz}$ and X is any Function of x	22.3
22.6	Equations Reducible to Homogeneous Linear Form: Legendre's Linear Equation	22.14
23. ORI	DINARY SIMULTANEOUS DIFFERENTIAL EQUATIONS	23.1
23.1	Introduction	23.1
23.2	Methods of Solving Ordinary Simultaneous Differential Equations with	22.1
23.3	Constant Coefficients Solutions of Simultaneous Differential Equations Involving	23.1
23.3	•	
	Operations $x \frac{d}{dx}$ or $t \frac{d}{dt}$ etc.	23.2
23.4	Simultaneous Equations of the Form $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	23.13
23.5	The Nature of Solution of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	23.13
23.6	Methods of Solving $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	23.13
24. LINI	EAR EQUATIONS OF SECOND ORDER	24.1
24.1	The General (Standard) Form	24.1
24.2	Solution of $y'' + Py' + Qy = R$	24.1
24.3	Method I. Complete Solution of $y'' + Py' + Qy = R$ in Terms of one known	
	Integral belonging to the Complementary Function	24.
24.4	Method II. Removal of the First Derivative (Reduction to Normal Form)	24.1
24.5	Method III. Transformation of the Equation by Changing the Independent Variable	24.10
24.6	Theorem	24.2
24.7 24.8	Method IV: Method of Variation of Parameters	24.2
24.8 24.9	Method V : Solution by Operators Method VI : Method of Undetermined Co-efficients	24.30 24.30
24.7	Method VI: Method of Undetermined Co-efficients	24.3.
25. APF	PLICATIONS OF DIFFERENTIAL EQUATIONS	25.1
25.1	Introduction	25.
25.2	Linear Motion of a Particle in a Resisting Medium	25.
25.3	Problems on Resistance Proportional to the Square of the Velocity	25
25.4	Simple Harmonic Motion	25.
25.5	Vibrating Springs	25.
25.6	Damped Vibrations	25.

xvi Mathematics for Engineers

Index

		7°1 3 7 749	
		Forced Vibrations	25.12
		Electric Circuits	25.13
	25.9	Bending of Beams	25,22
26.	INTE	GRATION IN SERIES	26.1
	26.1	Introduction	26.1
	26.2	Power Series Method	26.1
	26.3	Validity of the Power Series Method	26.3
27.	BESS	SEL'S EQUATION AND ITS SOLUTIONS	27.1
	27.1	Introduction	27. 1
	27.2	Solution of Bessel's Equation	27. 1
	27.3	Recurrence Relations of Bessel's Functions	27.8
	27.4	Values of Bessel's Functions of Order Half	27.10
	27.5	Generating Functions	27.16
	27.6	Integral Form of $J_n(x)$	27.17
	27.7	Transformation of Bessel's Equation	27.18
	27.8	Orthogonal Properties of Bessel's Functions	27.20
	27.9	Expansion in Terms of Fourier Bessel's Series	27.2 1
	27.10	Modified Bessel's Function	27.22
28	LEGI	ENDRE'S EQUATION AND ITS SOLUTIONS	28. 1
	28.1	Legendre's Equation	28.1
	28.2	Solution of Legendre's Equation	28. 1
	28.3	Definitions of $P_n(x)$ and $Q_n(x)$	28.3
	28.4	General Solution of Legendre's Equation	28.4
	28.5	Rodrigue's Formula	28.4
	28.6	The Generating Function for $P_{\mu}(x)$	28.0
	28.7	Orthogonality of Legendre Polynomials	28.7
	28.8	Recurrence Relations of Legendre's Polynomials	28.9
	28.9	Fourier-Legendre Expansion	28.1
	28.10	Laplace's Definite Integrals for $P_n(x)$	28.18
		Beltrami's Result	28.20
	28.12	Christoffels' Expansion	28.2
		Christoffel's Summation Formula	28.2

1.1

Volume II

29.	THE	LAPLACE TRANSFORM	29.1
	29.1	Piece-wise or Sectional Continuity	29.1
	29.2	Function of Exponential Order	29.1
	29.3	Function of Class A	29.2
	29.4	Integral Transform	29.2
	29.5	Laplace Transform	29.3
	29.6	Existence of Laplace Transform (Theorem)	29.3
	29.7	Linear Property of Laplace Transform	29.5
	29.8	Laplace Transforms of Some Elementary Functions	29.5
	29.9	Laplace Transforms of Discontinuous Functions	29.9
	29.10	First Shifting Theorem or First Translation	29.11
	29.11	Second Shifting Theorem or Second Translation	29.11
	29.12	Change of Scale Property	29.15
	29.13	Laplace Transform of Derivatives	29.17
	29.14	Laplace Transform of Integrals	29.17
	29.15	Laplace Transform of Multiplication By t	29.18
	29.16	Laplace Transform of $\frac{f(t)}{t}$ (i.e. Division by t)	29.19
		Periodic Functions	29.26
	29.18	Laplace Transform of Periodic Functions	29.26
	29.19	Evaluation of Integrals	29.29
	29.20	Initial and Final Value Theorems	29.31
	29.21	Laplace Transform of Some Special Functions	29.33
	29.22	Dirac-Delta Function	29.44
30.	THE	INVERSE LAPLACE TRANSFORMS	30.1
	30:1	Definition	30.1
	30.2	Null Function	30.1
	30.3	Uniqueness of Inverse Laplace Transforms	30.1
	30.4	Inverse Laplace Transforms of Some Elementary Functions	30.2
	30.5	Linear Property	30.3
	30.6	First Translation or Shifting Property	30.4
	30.7	Second Translation (or Shifting) Theorem	30.7
	30.8	Change of Scale Property	30.7
	30.9	Inverse Laplace Transforms of Derivatives	30.10
	30.10	Multiplication bys	30.11
	30.11	Division by s	30.12
		Convolution	30.15
	30.13	Partial Fractions	30.22
		Heaviside's Expansion Formula	30.27
		Evaluation of Integrals	30.28

31.	APPL	LICATIONS OF LAPLACE TRANSFORMS	31.1
	31.1	Introduction	31.1
32.	FOU	RIER SERIES	32.1
	32.1	Introduction	32.1
	32.2	Periodic Functions	32.2
	32.3	Fourier Series (Euler Formula)	32.2
	32.4	To Determine the Coefficients a_0 , a_n , b_n	32.3
	32.5	Finite Discontinuity	32.9
	32.6	Even and Odd Functions	32.14
	32.7	Fourier Expansion of Odd and Even Functions	32.14
	32.8	Half-range Series	32.18
	32.9	Change of Interval	32.19
	32.10	Change of Period	32.20
		Fourier Series for $f(x)$ in the Interval $[\alpha, \beta]$	32.20
		Complex Form of Fourier Series	32.25
		Theorem: (Parsevel's Identity)	32.26
33.	PAR	TIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER	33.1
	33.1	Introduction	33.1
	33.2	Derivation of Partial Differential Equation	33.1
	33.3	Definitions	33.5
	33.4	Equation Equivalent to the Linear Equation	33.5
	33.5	Lagrange's Linear Equation	33.6
	33.6	Lagrange's Solution of the Linear Partial Differential Equation of First Order	33.6
	33.7	The Linear Equation Containing More than Two Independent Variables	33.7
	33.8	Geometrical Interpretation of Lagrange's Linear Equation	33.7
	33.9	Method of Obtaining General Solution	33.8
	33.10	Non-linear Partial Differential Equations of First Order	33.13
		General Method	33.22
34.	LINE	AR PARTIAL DIFFERENTIAL EQUATIONS	34.1
	34.1	Linear Homogeneous Partial Differential Equation of nth Order with	
		Constant Coefficients	34.1
	34.2	Solution of Linear Partial Differential Equations	34.1
	34.3	Non-homogeneous Linear Equation with Constant Coefficients	34.19
	34.4	Particular Integrals of Non-homogeneous P.D.E.	34.21
	34.5	Equations Reducible to Homogeneous Linear Form	34.26
35.		SSIFICATION OF LINEAR PARTIAL	
	DIFF	ERENTIAL EQUATIONS	35.1
	35.1	Classification of Linear Partial Differential Equation of Second Order	35.1
	35.2	Fuler's Faustian	35.5

36.	METH	OD OF SEPARATION OF VARIABLES	36.1
	36.1	Method of Separation of Variables	36.1
	36.2	One-dimensional Wave Equation	36.3
	36.3	Two Dimensional Wave Equations	36.17
	36.4	Heat Equation	36.25
	36.5	Laplace's Equation	36.26
	36.6	Solution of One-dimensional Heat Equation	36.26
	36.7	Solution of Two Dimensional Laplace's Equation	36.41
	36.8	Solution of Two Dimensional Heat Equation	36.45
	36.9	Solution of Two Dimensional Laplace's Equation in the Cylindrical Coordinates	36.62
	36.10	Solution of the Laplace's Equation given in Cylindrical Coordinates	36.64
	36.11	Solution of Laplace's Equation given in Spherical Coordinates	36.65
	36.12	Transmission Line Equations	36.78
37.	THE	FOURIER TRANSFORM	37.1
	37.1	Definition: (Infinite) Fourier Sine Transform of F(x)	37.1
	37.2	Definition: (Infinite) Fourier Cosine Transform of F(x)	37.1
	37.3	Definition: The Infinite Fourier Transform of F(x)	37.2
	37.4	Theorems (Properties of Fourier Transform)	37.3
	37.5	The Finite Fourier Sine Transform of F(x)	37.17
	37.6	The Finite Fourier Cosine Transform of F(x)	37.18
	37.7	Theorems	37.18
38.	THE	Z-TRANSFORM	38.1
	38.1	Sequence	38.1
	38.2	Representation of a Sequence	38.1
	38.3	Basic Operations on Sequences	38.2
	38.4	Definition (Z-transform)	38.2
	38.5	Linear Property of Z-transform	38.3
	38.6	Change of Scale Property	38.4
	38.7	Multiplication by k	38.4
	38.8	Division of k	38.5
	20.0		
	38.9	Shifting Property	38.5
	38.9 38.10	Shifting Property Initial Value Theorem	
	38.10	Shifting Property Initial Value Theorem Final Value Theorem	38.6
	38.10 38.11	Initial Value Theorem Final Value Theorem	38.6 38.6
	38.10 38.11 38.12	Initial Value Theorem Final Value Theorem Partial Sum	38.5 38.6 38.7 38.7
	38.10 38.11 38.12 38.13	Initial Value Theorem Final Value Theorem	38.6 38.6 38.7
	38.10 38.11 38.12 38.13 38.14	Initial Value Theorem Final Value Theorem Partial Sum Convolution Inversion of the Z-transform	38.6 38.6 38.7 38.7
	38.10 38.11 38.12 38.13 38.14 38.15	Initial Value Theorem Final Value Theorem Partial Sum Convolution	38.6 38.6 38.7 38.7
39	38.10 38.11 38.12 38.13 38.14 38.15 38.16	Initial Value Theorem Final Value Theorem Partial Sum Convolution Inversion of the Z-transform Application of Z-transforms to Difference Equations	38.6 38.6 38.7 38.7 38.14 38.24
39	38.10 38.11 38.12 38.13 38.14 38.15 38.16	Initial Value Theorem Final Value Theorem Partial Sum Convolution Inversion of the Z-transform Application of Z-transforms to Difference Equations Relationship between the Z-transform and the Fourier Transform LYTIC FUNCTIONS	38.6 38.7 38.7 38.14 38.24 38.28
39	38.10 38.11 38.12 38.13 38.14 38.15 38.16	Initial Value Theorem Final Value Theorem Partial Sum Convolution Inversion of the Z-transform Application of Z-transforms to Difference Equations Relationship between the Z-transform and the Fourier Transform	38.6 38.7 38.7 38.14 38.24 38.28

XX Mathematics for Engineers

	39.4	Jordan Arcs	39.3
	39.5	Function of a Complex Variable	39.3
	39.6	Moduli and Conjugates	39.4
	39.7	Triangle Inequality	39.6
	39.8	Polar Coordinates and Euler's Formula	39.6
	39.9	Roots of Complex Numbers	39.7
	39.10	Analytic Function	39.9
		Cauchy-Riemann Equations	39.10
		Conjugate Functions	39.12
		Laplace's Differential Equations	39.12
		Orthogonal System	39.13
	39.15	Polar form of Cauchy-Riemann Equations	39.14
	39.16	Derivative of w in Polar form	39.16
	39.17	Construction of Analytic Functions	39.17
40	. СОМ	PLEX INTEGRATIONS	40.1
	40.1	Complex Integration	40.1
	40.2	Basic Definitions	40.1
	40.3	Complex Integral as the sum of Two Line Integrals	40.5
	40.4	Elementary Properties of Complex Integrals	40.10
	40.5	An Inequality for Complex Integrals or an Upper Bound for a Complex Integral	40.11
	40.6	Cauchy Theorem	40.12
	40.7	Cauchy-Goursat Theorem	40.13
	40.8	Cauchy's Integral Formula	40.17
	40.9	Gauss's Mean Value Theorem	40.19
	40.10	Extension of Cauchy's Integral Formula for Multiconnected Region	40.19
		Cauchy's Integral Formula for Derivative of an Analytic Function	40.20
		Indefinite Integrals	40.22
	40.13	Morera's Theorem	40.24
	40.14	Cauchy's Inequality	40.26
	40.15	Liouville's Theorem	40.26
	40.16	Poisson's Integral Formula	40.28
	40.17	Fundamental Theorem of Algebra	40.29
41	. POW	ER SERIES AND EXPANSION IN SERIES	41.1
	41.1	Definition	41.1
	41.2	Some Important Tests for Convergence of Series	41.1
	41.3	Theorems (on Power Series)	41.3
	41.4	Definitions	41.14
	41.5	Taylor's Theorem	41.14
	41.6	Laurent's Theorem	41.18
	41.7	Laurent's Expansion is Unique	41.22
	41.8	Lemma (Cauchy's Inequality)	41.23
	41.9	Lemma (Liouville's Theorem)	41.23
	41.10	Some Results	41.24

	Co	ontents xxi
42. SI	NGULARITIES	42.1
42.	1 Definitions	42.1
42.	— · · · · · · · · · · · · · · · · · · ·	42.2
42.	* * * * * * * * * * * * * * * * * * *	42.3
42.		42.9
43. C	ALCULUS OF RESIDUES AND EVALUATION OF	
RE	EAL DEFINITE INTEGRALS	43.1
43.	1 The Residue	43.1
43.		43.1
43.	•	43.2
43.	-	43.16
43.		43.16
43.		43.30
43.	7 Theorem	43.31
43.	8 Jordan's Inequality	43.32
43.		43.33
43.	10 Contour Integration of Functions Having no Poles on the Real Axis	43.34
43.	11 Evaluation of the Integrals of the Form $\int_{-\infty}^{\infty} f(x) \sin mx dx$, $\int_{-\infty}^{\infty} f(x) \cos mx dx$, $m > 0$	43.35
44. CC	ONFORMAL MAPPING	44.1
44.	1 Transformation or Mapping	44.1
44.	•	44.1
44.	3 Conformal Mapping	44.2
44.	4 Theorem	44.3
44.	5 Theorem	44.4
44.	6 Circle	44.7
44.	7 Inverse Points with Respect to a Circle	44.8
44.	8 Some Elementary Transformations	44.9
44.	9 Linear Transformation	44.16
44.	.10 Bilinear of Fractional Transformation of Mobius Transformation	44.16
44.	.11 Theorem	44.17
44.	.12 Preservance of Cross-ratio under the Bilinear Transformation	44.18
44.	.13 To Find the Bilinear Transformation which Transforms the Points	
	z_1, z_2, z_3 of Z-plane Respectively into the Points w_1, w_2, w_3 of w-plane	44.19
	.14 Theorem	44.19
	.15 Critical Points	44.20
	.16 Product of Two Bilinear Transformations	44.21
44.	.17 The Bilinear Transformation $w = \frac{(az + b)}{(cz + d)}$ can be Considered as a	
	Combination of the Elementary Bilinear Transformations	44.22

xxii Mathematics for Engineers

	44.18	Fixed Points or Invariant Points of a Transformation	44.22
	44.19	Normal Form of a Bilinear Transformation	44.23
	44.20	Theorem	44.26
45.	MOM	ENTS, SKEWNESS AND KURTOSIS	45.1
	45.1	Moments	45.1
	45.2	Moments about Mean (or Central Moments)	45.1
	45.3	Moments about Arbitrary Point	45.2
	45.4	Finding Central Moments from Moments about Arbitrary Point	45.2
	45.5	Skewness	45.5
	45.6	Difference between Variation and Skewness	45.6
	45.7	Absolute Measures of Skewness	45.6
	45.8	Kurtosis	45.15
	45.9	Measures of Kurtosis	45.16
46.	COR	RELATION ANALYSIS	46.1
	46.1	Introduction	46.1
	46.2	Correlation Analysis	46.1
	46.3	Methods of Studying Correlation	46.1
	46.4	Scatter Diagram Method	46.2
	46.5	Graphic Method	46.2
	46.6	Karl Pearson Correlation Coefficient or Product Moment Coefficient of Correlation	46.2
	46.7	Properties of the Correlation Coefficient	46.5
	46.8	Calculation of Coefficient of Correlation for a Bivariate Frequency Distribution	46.11
	46.9	Probable Error (PE) of the Correlation Coefficient	46.15
	46.10	Coefficient of Determination	46.16
	46.11	Rank Correlation Coefficient	46.16
	46.12	Spearman's Rank Correlation Coefficient	46.16
	46.13	Equal Ranks/Repeated Ranks	46.17
	46.14	Merits and Limitations of Spearman's Rank Correlation	46.18
	46.15	Concurrent Deviation Method	46.19
47.	REG	RESSION ANALYSIS	47.1
	47.1	Introduction	47.1
	47.2	Types of Regression	47.1
	47.3	Regression Lines	47.2
	47.4	Methods of Constructing the Regression Lines	47.2
	47.5	Alternative Method of Fitting Regression Equation	47.4
	47.6	Difference Between Correlation and Regression	47.6
48	. PRO	BABILITY DISTRIBUTIONS	48.1
	48.1	Random Variable	48.1
	48.2	Discrete Probability Function	48.1
	48.3	Probability Mass Function	48.2
	48.4	Cumulative Mass Function	48.2

48.5	Continuous Probability Function	48.2
48.6	Probability Density Function	48.2
48.7	Cumulative Density Function	48.2
48.8	Expected Value and Variance	48.2
48.9	Properties of Expected Value and Variance	48.3
	Binomial Distribution	48.4
48.11	Mean and Variance of Binomial Distribution	48.6
	Fitting a Binomial Distribution	48.9
	Poisson Distribution	48.17
48.14	Mean and Variance of the Poisson Distribution	48.18
48.15	Form of the Poisson Distribution	48.19
48.16	Fitting a Poisson Distribution	48.21
48.17	Normal Distribution	48.29
48.18	Relation between Binomial, Poisson and Normal Distribution	48.31
48.19	The Standard Deviation and the Normal Curve	48.31
48.20	Moments of the Normal Distribution	48.32
48.21	Properties of the Normal Distribution	48.32
48.22	Importance of Normal Distribution	48.33
48.23	Area Under the Normal Curve	48.34
48.24	Applications of the Normal Distribution	48.35
48.25	Fitting of Normal Distribution	48.35
49. THE	ORY OF EQUATIONS	49.1
49.1	Polynomial	49.1
49.2	Equality of Two Polynomials	49.1
49.3	Complete and Incomplete Polynomials	49.2
49.4	Zero of a Polynomial	49.2
49.5	Division Algorithm	49.2
49.6	Polynomial Equation	49.2
49.7	Roots of an Equation	49.2
49.8	Synthetic Division	49.3
49.9	Fundamental Theorem of Algebra	49.5
49.10	Relation between the Roots and the Coefficients of an Equation	49.5
	Transformation of an Equation into Another whose Roots are m	
	Times those of the given Equation	49.8
49.12	Transformation of an Equation into Another in which Leading Coefficient be one	49.9
	Transformation of a Equation into Another Whose Roots are the Roots of the given	
	Equation Diminished by a Constant α	49.9
49.14	Removal of Terms	49.11
	Descarte's Rule of Signs	49.13
	Cardon's Method of Solving the Cubic Equation	49.14
	Irreducible Case of Cardon's Solutions	49.16
	Euler's Solution of the Biquadratic Equation	49.24
	Descarte's Method of Solving Biquadratic Equations	49.27
	Ferrari's Solution of the Biquadratic Equations	49.32

Contents **xxiii**

xxiv Mathematics for Engineers

Index

50. METH	50.1	
50.1	Method of Least Squares	50.1
50.2	Curve Fitting	50.2
50.3	The Method of Least Square Used in Curve Fitting	50.2
50.4	Normal Equations	50.4
50.5	Most Plausible Values	50.5
50.6	Fitting of the Curve of the Type $y = ab^x$ And $y = ax^b$	50.5
50.7	Fitting of the Exponential Curve $y = ae^{bx}$	50.5
50.8	Fitting of the Equation $pv^{\gamma} = k$	50.6
50.9	Fitting of the Curve of the Type $xy = b + ax$	50.6
50.10	Fitting of the Curve of the Type $y = ax + \frac{b}{x}$	50.6
50.11	Fitting of the Curve of the Type $y = \frac{a}{x} + bx$	50.7
50.12	Fitting of the Curve of the Type $y = ax + bx^2$	50.7
50.13	Fitting of the Curve of the Type $y = ax^2 + \frac{b}{x}$	50.7
50.14	Fitting of the Logistic Curve $y = \frac{a}{1 + bc^{-x}}$ as $x \to \infty$ and $y \to a$	50.7

1.1